상세정보
파이썬 날코딩으로 알고 짜는 딥러닝 - 프레임워크 없이 단층 퍼셉트론에서 GAN까지

파이썬 날코딩으로 알고 짜는 딥러닝 - 프레임워크 없이 단층 퍼셉트론에서 GAN까지

저자
윤덕호 지음
출판사
한빛미디어
출판일
2019-07-14
등록일
2019-12-24
파일포맷
PDF
파일크기
7MB
공급사
알라딘
지원기기
PC PHONE TABLET 프로그램 수동설치 뷰어프로그램 설치 안내
현황
  • 보유 1
  • 대출 0
  • 예약 0

책소개

★ 인공 신경망 원리와 응용을 파이썬 날코딩으로 정말 깊이 이해하자!
이 책은 딥러닝 알고리즘의 원리를 깊숙이 이해하고 이를 파이썬 코딩만으로 구현하는 데 주안점을 둔다. 이를 위해 가장 간단한 신경망 구조부터 복잡한 응용 구조까지 다양한 딥러닝 신경망 예제의 실제 구현 과정을 소개한다. 그 과정에서 독자는 딥러닝 알고리즘을 텐서플로 같은 프레임워크 없이도 개발하는 능력을 갖추게 된다. 딥러닝 알고리즘을 깊이 이해하면 역설적으로 프레임워크를 이용할 때의 장단점을 더 확실히 알 수 있다. 나아가 자신만의 새로운 딥러닝 신경망을 개발하는 밑거름이 될 것이다.

★ 난도는 중상 이상이다, 정말 깊은 이해를 원하는 대상 독자만 봐달라!
이 책의 대상 독자는 크게 두 부류다. 첫 번째는 텐서플로 같은 프레임워크를 사용해 딥러닝에 입문했지만 여전히 딥러닝 알고리즘의 동작 원리를 제대로 이해할 수 없어 답답함을 느끼는 기존 딥러닝 개발자다. 두 번째는 딥러닝을 새로 배워보려 하지만 기왕이면 수박 겉 핥기식 공부보다는 딥러닝 알고리즘을 제대로 이해하는 공부를 하고 싶은 딥러닝 입문자다.

★ 프레임워크를 이용하지 않고 파이썬 날코딩만으로 딥러닝 문제를 풀어보자!
이 책의 목표는 독자가 딥러닝 알고리즘의 원리를 깊이 있게 이해하여 활용 능력을 갖추도록 돕는 데 있다. 각 장은 이론을 제시한 후에 파이썬으로 예제 프로그램을 구현하고 실험을 수행하는 과정을 차근차근 소개한다. 이들 예제 프로그램을 꼼꼼하게 설명한다. 또한 실험 과정을 재현하고 변형해 활용하기 쉽게 구성했다. 예제 프로그램을 살펴보면서 그동안 편리한 프레임워크에 가려져 이해하지 못한 채 지나쳤던 딥러닝의 동작 원리를 확실하게 알게 된다. 이렇게 길러진 이해를 토대로 프레임워크 없이도 직접 딥러닝 신경망을 개발하는 능력을 갖추게 될 것이다. 동시에 역설적으로 숨은 동작 원리를 간파하게 됨으로써 프레임워크를 더 잘 이용하게 된다.

★ 캐글 플랫폼에서 수집한 다양한 실전 예제를 만나보자!
예제에서 다루는 다양한 데이터셋은 이 책의 또 하나의 매력이다. 각종 인공지능 챌린지 대회가 펼쳐지는 캐글 플랫폼에서 수집한 실전 데이터셋은 딥러닝 모델의 활용 범위에 대한 상상의 지평을 넓혀줄 것이다. 전복 나이 추정, 천체 펄서 여부 판정, 철판 불량 상태 분류, 꽃 사진 이미지나 도시 소음의 분류 등의 문제를 캐글 데이터셋을 이용해 다룬다. 이 밖에도 사무용품 이미지들로 구성된 오피스31 데이터셋, 필기체 문자 이미지들을 모은 엠니스트(MNIST) 데이터셋을 비롯해 영화 동영상 파일, 회화 이미지 파일, 오토마타 문법 등 다양한 종류의 데이터셋을 예제 프로그램에서 사용한다.

여러분이 자신만의 새로운 딥러닝 신경망을 개발하고, 딥러닝을 넘어서는 인공지능의 또 다른 지평을 향해 나아가는 첫걸음에 이 책이 도움이 되기를 기대해본다.

★ 이 책에서 파이썬 날코딩으로 구현하는 신경망
_1. 단층 퍼셉트론(SLP)
_2. 다층 퍼셉트론(MLP)
_3. 합성곱 신경망(CNN)
_4. 순환 신경망(RNN)
_5. 오토인코더
_6. 인코더-디코더
_7. 생성적 적대 신경망(GAN)

★ 이 책에서 다루는 내용
이 책은 총 5부로 구성되어 있다. 다루는 내용은 다음과 같다.

1부 : 단층 퍼셉트론
가장 간단한 신경망 구조인 단층 퍼셉트론 구조를 소개하면서 신경망 출력을 이용해 풀어야 할 세 가지 문제 유형의 해결 방법을 살펴본다. 1장에서는 전복 고리 수 추정 신경망 예제를 통해 `회귀 분석 문제`의 해결 방법을, 2장에서는 펄서 여부 판정 신경망 예제를 통해 `이진 판단 문제`의 해결 방법을, 3장에서는 철판의 불량 상태 분류 신경망 예제를 통하여 `선택 분류 문제`의 해결 방법을 각각 소개한다.

2부 : 다층 퍼셉트론
기본적이면서도 실전적인 다층 퍼셉트론 구조를 소개하면서 객체지향 모델 구조와 복합 출력의 처리 방법을 다룬다. 4장에서는 지금까지의 예제들을 다층 퍼셉트론으로 다시 풀어내며, 5장에서는 객체지향 구조로 프로그램을 재구성하면서 꽃 이미지 분류 신경망 예제를 소개한다. 6장에서는 오피스31 이미지의 다차원 분류 예제를 사용해 복합 출력을 다루는 방법을 살펴본다.

3부 : 합성곱 신경망
합성곱 신경망과 정규화 기법, 거대 심층 구조를 살펴보면서 은닉 계층 구성에 이용되는 12가지 계층의 기능과 구현 방법을 살펴본다. 7장에서는 이미지 처리에 특화된 합성곱 신경망에 이용되는 4가지 계층을 소개한다. 8장에서는 다섯 가지 정규화 기법을 살펴본다. 이 가운데 L1 손실 및 L2 손실을 가중치 학습 과정에 반영해 처리하는 과정을 소개한다. 또한 드롭아웃, 잡음 주입, 배치 정규화 기법을 각각 별도 계층으로 구현한다. 9장에서 인셉션 모델이나 레스넷 모델 같은 거대 심층 구조를 지원하는 5가지 복합 계층을 소개한다.

4부 : 순환 신경망
시간 축을 갖는 시계열 데이터 처리에 특화된 순환 신경망을 이용해 다양한 종류의 데이터를 다루는 과정을 살펴본다. 10장에서 오토마타 생성 문장 판별 신경망 예제와 함께 기본 구조의 순환 계층을 소개한 후, 11장에서 도시 소음 분류 신경망 예제와 함께 LSTM(long shortterm memory) 셸 구조의 개선된 순환 계층을 살펴본다. 12장에서는 동영상 장면 전환 프레임 판별 신경망 예제와 함께 시계열 출력을 다루는 방법을 다룬다.

5부 : 딥고급 응용 신경망 구조들
문제에 접근하는 새로운 시각을 보여주는 세 가지 딥러닝 응용 구조를 소개한다. 13장에서는 입력 재현을 목표로 삼는 방법으로 비지도학습에 활용하는 오토인코더, 14장에서는 콘텍스트 벡터를 매개로 입출력 간의 데이터 형태 차이를 극복하는 인코더-디코더, 15장에서는 경쟁 관계의 두 신경망을 이용해 데이터 생성 능력을 기르는 생성적 적대 신경망를 소개하고 각각 구체적 예제 프로그램을 제시한다.

QUICKSERVICE

TOP